Complexation of III/V ions to nanoparticles involved in chemical mechanical polishing (CMP) process

Xiangyu Bi and Paul Westerhoff

School of Sustainable Engineering & The Built Environment, Arizona State University

An industry case using "nanoparticles (NPs)": Chemical mechanical polishing(CMP)

Typical NPs: SiO₂, CeO₂, Al₂O₃, etc.

species: GaAs, InP, GaN, etc.

- **\(\text{High global production of CMP NPs} \)**
- O Consumptions: Si-5500 t/yr; Ce & Al-55 t/yr (Piccinno et al.,2012)
- o CMP nanoparticles constituted **nearly 60%** of the total \$1 billion worldwide market for nanopowders by 2005. (Feng et al., 2006)
- o CMP is the **second largest** nano-market after nanocatalysts. (Pitkethly,2002)

Polish pad

- **❖** Growing use of III/V materials and the potential issues
- In: **0.95~20.05 ppb** in groundwater near a semiconductor manufacture (0.01ppb in background). (Chan, 2006)
- O Ga: ~27ppm to ~2000ppm in polishing wastewater. (Torrance et al., 2010)
- o As: 1800-2400 mg/L dissolved As in polishing waste stream. (Torrance and Keenan, 2009)

ARIZONA STATE UNIVERSITY

CeO.

AsO.

Research hypothesis and question

❖ Concerns on the interaction of III/V ions with CMP NPs

Toxicological study in collaboration with **Prof. Reyes Sierria at University of Arizona** and **Prof. Robert Tanguay at Oregon State University**.

• This work serves as *the first step* toward testing the hypothesis that CMP NPs and III/V ions lead to a synergetic ecological risk via "Trojan Horse mechanism", by answering the question: What is the expected quantity of III/V ions that can be adsorbed to CMP NPs in aquatic environment?

Materials for experiment

• Four model CMP slurries were obtained directly from Cabot Microelectronics.

Manufacture provided information

Slurry name	nanoparticle concentration	nanoparticle size (nm)	pН	pH adjusting agent	Colloidal SiO ₂	Furned SiO ₂
Colloidal silica	3 wt%	50-60	2.5-4.5	acetic acid <1%		
Fumed silica	5 wt%	120-140	10	KOH <1%	Colloidal SiO ₂	Furned SiO ₂
Ceria	1 wt%	60-100	3-4			
Alumina	3 wt%	80-100	4.5-5.0	nitric acid <1%	50 nm	100 m

- More information on CMP NPs can be found from:
- Speed, David; Westerhoff, Paul; et al. "Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments." Environmental Science: Nano (2015), 2, 227-244, DOI: 10.1039/C5EN00046G.
- Bi, X., Reed, R. B., & Westerhoff, P. (2015). Control of nanomaterials used in chemical mechanical polishing/planarization slurries during on-site industrial and municipal biological wastewater treatment. In Baalousha, M. & Lead, J. R.(Eds.), Characterization of nanomaterials in complex environmental and biological media (PP247-265). Waltham, MA: Elsevier. ISBN:9780080999487.

Adsorption experiment method

The formulation of surface complexation model -for the case of AsO_4^3 - ions

A surface complexation model assumes adsorption occurs on specific sites on particle surface, i.e., -OH, forming surface ligands for different As(V) species.

$$NP - OH + AsO_4^{3-} + H^+ \rightleftharpoons NP - AsO_4^{2-} + H_2O$$

$$K_{app} = \frac{\left[NP - AsO_4^{2-} \right]}{\left[NP - OH \right] \left[AsO_4^{3-} \right] \left[H^+ \right]}$$

The formulation of surface complexation model -for the case of AsO_4^3 - ions

$$H_3AsO_4 \rightleftharpoons 3H^+ + AsO_4^{3-}$$
 K_{As}^1 Known

 $H_2AsO_4^- \rightleftharpoons 2H^+ + AsO_4^{3-}$ K_{As}^2 Determined by fitting zeta potential data.

 $NP - OH_2^+ \rightleftharpoons NP - OH + H^+$ K_s^1 potential data.

 $NP - OH \rightleftharpoons NP - O^- + H^+$ K_s^2 $NP - OH + (AsO_4^{3-} + H^+) \rightleftharpoons NP - AsO_4^{2-} + H_2O$ $K_C^1 \setminus C_1^{2-}$ $NP - OH + (AsO_4^{3-} + 2H^+) \rightleftharpoons NP - HAsO_4^{-} + H_2O$ $K_C^2 \cdot C^{-1}$ $NP - OH + (AsO_4^{3-} + 3H^+) \rightleftharpoons NP - H_2AsO_4 + H_2O$ $K_C^3 \cdot C_1^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OH + AsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHAsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHAsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHAsO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHASO_4^{3-} \rightleftharpoons NP - OHAsO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHASO_4^{3-} \rightleftharpoons NP - OHASO_4^{3-}$ $K_C^4 \cdot C^{-1}$ $NP - OHASO_4^{3-} \rightleftharpoons NP - OHASO_4^{3-}$ $NP - OHAS$

 $K^{1}_{As} = 20.6; K^{2}_{As} = 18.36;$ $K^{3}_{As} = 11.6; from$ Drever 1997.

AsTOT: total As(V) ion concentration, 0.1 mM in this work.

NPconc: total NP concentration, 500mg/L as Ce or Al in this work.

SSD: surface site density, in nm⁻².

SSA: specific surface area, in m^2kg^{-1} .

NP-x: any site on NP surface.

AsAds% = f(Kc1, Kc2, Kc3, Kc4, SSA, pH)

Fit experimental data. ARIZONA STA

Outcome impacts

• Information to semiconductor industry: The Adsorption to CMP NPs can be a critical fate of III/V ions in wastewater.

Ion	pH condition	Colloidal SiO ₂	fumed SiO ₂	CeO ₂	Al_2O_3
Ga(III)	acidic				
	neutral				
	basic				
As(V)	acidic	•	0	• •	••
	neutral	0	0		
	basic	0	0	0	•
In(III)	acid	0	0	0	•

- Significant adsorption
- Slight adsorption
- O No adsorption

- Surface complexation model provides information on adsorption mechanism and guides the industry to predict III/V ion and NP interactions under different conditions (e.g., pH).
- This study provides the critical groundwork for the next research on the "synergetic" risk assessment for CMP NPs and III/V ions.

Bioassays for multiple trophic level toxicity studies.

Colorimetric detection of NP reactivity.

ZONA STAT

Environ. Sci. Technol., 2015, 49 (6), pp 3611-3618

Acknowledgements

We gratefully acknowledge all funding agencies

 Semiconductor Research Corporation (SRC), Task 425.052.

NSF-ENGCBET(#1507750)

• USEPA-NCCLCs(RD835580)

Thanks for contributions from all collaborators and coworkers

 Dr. David Speed, GlobalFoundries.

 Dr. Reyes Sierra-Alvarez, University of Arizona

 All other coworkers and colleagues at ASU.

